

Overview

- Fundamentals of X-ray fluorescence spectrometry
- Qualitative analysis of EDXRF
 - Advantages and disadvantages
 - Handheld vs. micro-XRF vs. macro-XRF
- · Tips and tricks
- Case studies

XRF: Interpretation of Results

- Elemental composition
- Approximate relative concentration*

Limitations:

- No conclusive information on phase of analyte
- No conclusive information on oxidation state of analyte

*Nonhomogeneous samples with air-path XRF

approximately comparative as matrix specific calibrated methods

Courtesy of Maggi Loubser

approximately comparative as matrix specific calibrated methods

ourtesy of Maggi Loubser

- Determine elemental composition magnesium (Mg) to uranium (U)
- Fast, real time results: on-the-spot elemental composition analysis
- Little to no sample prep point & • shoot
- · Hand-held and portable

Limitations of Air-path XRF

- · Matrix effects
- · Physical effects
- Light elements unable to be analysed: H, He, Li, Be, B, C, N, O, F
- Attenuation of low energy photons in air: Al difficult; Mg not • possible
- Limited penetration depth (depth from which photon escapes) in sample
 - · Element and energy specific
- · Resolution dependent on detector

Air-path energy-dispersive XRF Not determinable Determinable but with difficulty (with SDD detectors) Low sensitivity to these elements with SiPIN detector Determinable Not determined Ma W Re Os Fr Ra Ac Sm Eu

Characteristic Line Spectrum

• Atoms in the anode (target) are bombarded by high speed electrons

Characteristic Line Spectrum

- Atoms in the anode (target) are bombarded by high speed electrons
- These electrons expel an electron from the K shell if they have enough energy

Binding Energy of an Electron

- The binding energy is the minimum X-ray energy required to expel an electron from a given atom sub-shell (K, L, M shell)
- The basic unit of binding energy is the kiloelectron volt (keV)
- The binding energy has the same numerical value as the excitation potential (units of kV)

Characteristic Line Spectrum

- Atoms in the anode (target) are bombarded by high speed electrons
- These electrons expel an electron from the K shell if they have enough energy
- The vacancy created is filled by an electron from a higher shell
 These transitions occur from higher to lower energy states, and the energy difference is emitted as an x-ray photon

Characteristic Line Spectrum

- Atoms in the anode (target) are bombarded by high speed electrons
- These electrons expel an electron from the K shell if they have enough energy
- The vacancy created is filled by an electron from a higher shell
 These transitions occur from higher to lower energy states, and the energy difference is emitted as an x-ray photon
- The excitation potential is the minimum tube potential required to expel an electron from a specified electron shell to create an electron vacancy in that shell

Excitation Potential

- Minimum X-ray tube operating potential (kV) that can excite characteristic lines in the tube target <u>or</u> the sample
- Each element has as many excitation potentials as it has electron orbitals or energy levels
- Excitation potentials increase with atomic number Z

Absorption Edges: Important in excitation by X-rays

- An ABSORPTION EDGE is the maximum wavelength (the minimum X-ray energy, which is the excitation potential) that can expel an electron from a specified electron level in an atom.
- *Absorption Edges*, expressed as wavelengths (Å or nm), correspond to *Excitation Potentials*, expressed as energy (kV).
- For each element there is *one* K absorption edge, *three* L absorption edges, and *five* M absorption edges.

Excitation Potential vs. Absorption Edge									
	Excitation Potential (kV)				Absorption Edge (Å)				
	Rh K	=	23.2	=	12.4 23.2	=	0.53		
	Rh L _{III}	=	3.0	=	$\frac{12.4}{3.0}$	=	4.13		
	Rh M _v	=	0.3072	=	12.4 0.3072	=	40.36		

Excitation by X-rays

- ONLY X-rays with wavelengths shorter than a specific absorption edge (or greater than a specific binding energy) can excite the characteristic lines corresponding to that edge.
- The closer an exciting wavelength is to an absorption edge the more strongly it is absorbed, and therefore the more efficiently it excites the characteristic lines.
- The most efficient wavelength for exciting a specific line is a wavelength just shorter than the corresponding absorption edge (energy just above the binding energy)

Slide 20

G11 GCI 11, 11/6/2016

Rayleigh and Compton Scattering

- Rayleigh (elastic) scattering
 - Incident radiation scattered by sample atoms without losing any energy.
 - Rayleigh lines = characteristic energies of x-ray tube target
- Compton (inelastic) scattering

 Incident radiation scattered by sample atom with some loss in energy.

Adjustable Parameters

X-ray source target	Determines shape of continuous excitation spectrum and x-ray lines available for excitation (only adjustable if x-ray tube is interchangeable)
Collimation	Determines area of excitation (spot size on sample)
Voltage	Determines the highest energy that a photon coming from the tube can have
Current	Proportional to the number of photons produced in the x-ray tube
Filter	changes the excitation spectrum
Atmosphere (vacuum / He)	reduces the absorption of low energy photons air, improves detection of elements lines \leq 3 keV
Time	

Excitation Source Most common tube targets Mo, Rh for general use W for heavy elements Cu, Cr, Ag for light elements W target for heavy elements 2 to 5 times larger peak areas for K-line elements > 20 keV

Artifacts in spectrum due to detector

• Escape peaks → incident x-ray photon excites Si Ka1 escapes the detector before being reabsorbed

Measured energy of element will be reduced by **1.740 keV** (energy of the escaped Si Ka1 x-ray)

• Sum peaks \rightarrow pile up of electrons at detector due to high current

Escape peaks and spectral overlaps

Elements lower in atomic number then Si (14) cannot have an escape peak from the EDX unit, ex. Mg and Al

Escape peaks and spectral overlaps

Elements lower in atomic number then Si (14) cannot have an escape peak from the EDX unit, ex. Mg and Al

Cara	3.69 keV
Si Ka	1.74 keV
Escape peak	1.95 keV
P Ka	2.01 keV
Relevant whe to determine phosphorous along with ca (ex: to indica	en trying whether is present llcium ate use of

Artifacts in spectrum due to detector

• Sum peaks \rightarrow pile up of electrons at detector due to high current

Pb sum peaks and spectral overlaps

Pb La and Lb sum peaks		
Pb La + Pb La	21.0 keV	Pd Ka = 21.2 keV
Pb La + Pb Lb	23.1 keV	Cd Ka = 23.2 keV
Pb Lb + Pb Lb	25.2 keV	Sn Ka = 25.2 keV

Relevance:

- Detection of low intensity tin peaks in the presence of intense lead L lines (study of bronzes, detection of lead-tin yellow pigment, etc.).
- Detection of low intensity cadmium lines in the presence of intense lead L lines (detection of cadmium yellow or cadmium red in the presence of lead white).

Interference with Instrumentation

- Equipment and instrument contribution
 - Incident radiation may excite instrument components and their characteristic x-ray lines may be detected in the spectrum
- · Possible contributors:
 - Collimators, lens components, detector can, window material, etc.

Interactions in the Sample

- · Scattering of incident radiation
 - Rayleigh (elastic) scattering
 - Compton (inelastic) scattering
 - Bragg scattering (diffraction peaks)
- Matrix effects: Relating to how X-rays interact with matter
 - Absorption
 - Enhancement

Absorption and Enhancement

- Absorption: Any element can absorb or scatter the fluorescence of the element of interest. Absorption decreases the intensity of the signal of interest.
- Enhancement: Characteristic x-rays of one element excite another element in the sample, enhancing its signal.

<text><list-item><list-item><complex-block>

Enhancement

- Fluorescence from one or more matrix elements have sufficient energy to excite (induce) fluorescence in another element in the matrix
- Observe more analyte fluorescene than would normally be excited by X-ray tube radiation
- Enhancement may or may not occur; Absorption always occur

Physical factors that influence XRF spectra

- Particle size effects
- Surface roughness
- Impact of air-gap
- Sampling prep for nonhomogenous samples

y of Karen Trentelma

an, K., et. al., Applied Physics A, 121, 801-11 (2015)

Trentelman, K., et. al., Applied Physics A, 121, 801-11 (2015)

Common interferences

- · Inhomogeneous samples
- Substrate
- Area of interest smaller than aperture (6mm)
- Shielding from varnish/dirt/patina on surface
- Rough or complex surface shapes
- Contamination on window
- Overlap of peaks (e.g. Pb/As or Ba/Ti)
- Sum / escape peaks

Summary

- Problem definition: is XRF appropriate?
- · Operating parameter selection
- · Spectral interpretation
- · Impact of instrument components on results
- · Inference of compounds from elements
- · Reporting data and results
- · Going beyond XRF to find answers
 - Complementary techniques, e.g. Raman and XRD

XRF Boot Camp for Conservators

- 4 days of lectures and hands-on exercise modules illustrating fundamental concepts and practical considerations
- · Group projects with museum objects and presentations

http://getty.edu/conservation/our_projects/education/xrf