

Outline

- · Theory Raman Scattering
- Instrumental Considerations
- Applications of Raman Spectroscopy: Pigments & Minerals, Paper and Organic materials
- Resonance Phenomena

•

•

Complexity of Raman Spectroscopy: Experimental Parameters Spectral Resolution (grating, laser) • Spectral Range Calibration DANGER Number of acquisitions Time for each acquisition LASER RADIATION Laser parameters: DIODE LASER 5 mW MAX OUTPUT at 670 nm CLASS Illa LASER PRODUCT Wavelength • Power density . Fluence (energy/ spot size) Microscope parameters Magnification, focal distance, aberrations

1st Main limitation of Raman Spectroscopy: burning samples

Databases

- Base de données de spectres Raman (La Société Française de Minéralogie et Cristallographie) (la SFMC)
- Handbook of Minerals Raman Spectra (ENS-Lyon)
- Integrated database of Raman spectra, X-ray diffraction and chemistry data for minerals (RRUFF Project)
- Mineral Raman Database (University of Parma)
- Raman Spectra Database of Minerals and Inorganic Materials (RASMIN) (Ceramics Inst. AIST)
- Raman Spectra of Carbohydrates (Royal Vet. & Agric. Univ.)
- Raman Spectroscopic Library of Natural and Synthetic Pigments (Univ. College London)

Inorganic Pigments				End pignerits			
				Name	Concession	Band waverandters' km ⁻¹ (and solution terminities ⁶	Exclusion manufergel (cm)
Name	Complication	Band weverambers" tens "1) and infantive converting?"	Exclusion wardlingt	Lifterge	Torragonal load(II) coade, PbO	141 vic 285 van Alaine	612.8
			1wm	Mars Red	Systemic mentilitionale, PeyO,	134 yr; 294 yr; 487 m; 494 y; 610	832.8
Unitedia	Base sugger(0) chiende, CuCl, (CuCl),	822 m; 140 m; 360 w; 313 m; 821 m; 865 x 911 x; 474 x	514.5	Purporta	$1,2,9$ Tribydocxy-actinauga soas $C_{1,0}\Omega_{1,0}\Omega_{2}$	950 m, 1009 m, 1000 m, 1093 m; 1138 m; 1100 vm; 1229 m, 1312 h;	ATEA
reid:	Circlebilli mids: CigO, Circlebilli mids: CigO, aZeO	223 VK: 308 W; 349 W; 532 KK 511 W 328 witht 354 vs. 471 vs.61	514.5	Reipe	$\alpha\text{-Ammin}(\Pi)$ subde: $A\alpha\beta_4$	142 w, 164 w; 171 w; 182 w; 181 c; 128 c; 259 w; 207 w; 181 w;	472.8
		355 whrt		Red marks and	long10 or ide abasen place	154 x 367 w: 375 w 229 m 290 m 402 m 401 w: 401	672.8
fasterial general	sumax CfC38/07 324/pr077	222 w; 154 vg, 175 vg, 217 vg, 242 vg, 254 m; 325 m; 711 m; 439 m; 462 m; 589 m; 617 cg;	714.3	acher Rad land	(FegO ₂ volte) + silica) Dissolititi (eadDV) scale: Ph(0,	9 122 vs. 149 m. 223 vc. 313 vc. 340	432.8
		980 w; THU w; 835 w; 851 m; 1255 m; 1440 m; 1558 m; 2505 e		Venilles Bot pignille	n-Metoarythy callide, HaS	252 vic 202 while 340 m	ALC: N
Utaliante le	Pace opport(II) outcome CaCO ₂ -CatO(0 ₄	155 m 178 m 217 m; 248 m; 354 m; 433 vi; 208 m; 553 a 554 m; 757 mm; 1051 m; 1055 m; 1492 vi;	384.5	Neme	Omprétes	Read managements that "") and status interaction"	Excite
ichasic's green	Copper(II) accessite CatAsO ₂);	136 m 201 millet 236 m; 275 m; 378 m; 446 m; 485 m; 537 m;	514.5				000
Gere varie	Vaciations on K-(IA) ^{E1} , TV ²⁹ E1V ²¹ , Mg ¹² 3,	657 mic; 280 s 345 mic; 395 w; 300 w; 626 m; 663 m; 628 vw; 1097 m; 3086 m	314.2	ARCEN	Base reports scheare 3CaCD ₁ Col040 ₂	141 w; 200 w; 200 w; 200 w; 200 w; 301 w; 400 v; 143 w; 146 w; 441 287 w; 209 w; 901 w; 1000 w; 1612 m; 1479 w; 1980 w; 1622 m;	7(4.5
Nedgris (see	(ASS, SU CulDH), CopperD) officients CulDB/CDO).	126 m; 160 m; 253 m; 522 m; 203 m; 846 m; 1200 w; 1417 w;	514.3	Cristian Ske Cristi Mac	Cobality same GO also, Cobality-depet sinche gles. CoD 3405.	403 milika 512 to 878 mil 203 ve, 512 mil	314.5 394.5
fordigris Inc. II	Basic hydrated copport[1] otherces	1441 w. 2943 m. 2999 w. 3027 w 179 yes: 180 w. 251 st 328 st 292 w. 512 w. 618 w. 680 w. 690 w.	1143	Egotier Nor-	Calciers respect(1) si siste Calcieru(1)	114 year 117 year 200 yei 200 yei 218 year 207 year 430 year 471 yeardag 211 yei 207 year 762 yei 767 yei 992 yei	314.5
	ICMCH/CODI-CWOHR-1H-0	1531 w; 1407 m; 1441 m. 1533 w(br); 2937 w; 1988 m;		Lanite	N & S; is a solars denias-	1012 w: 1040 w; 1086 s 256 w; 548 e; 822 w; 1055 m	314.5
(exages (ex. 2)	Boic copper(II) effactoria CorCHLCDOL: CorOthy	170 a. 211 vie: 531 m. 221 w; 526 m; 615 vie: 576 w; 528 a.	314.2	Pour juli er	Board appreciation	131 col: 200 col: 210 col: 327 col: 467 cl: 612 cl: 600 cl: 1862 col: 1246 col:	0.22.8
		1281 w: 1424 m; 1524 w: 2929 w; 3192 w; 3976 w; 3970 w		Printer Mar	(weilig besseganderand)	181 va. 518 va. 1181 m. 2134 va	514.5
Aridian	Chromatelilli enide CryDy-2H/O	206 w; 407 m; 592 m; 585 mi	314.7	bail .	Cabatally a lasts CoO rds0,	462 VI: 9/7 m	314.5

Analysis of Cross-sections

Raman Analysis:

- Laser excitation: 514.5 (Ar+) and 785 (Diode) nm
 Objective magnification: 50X (5μm²)
- □ Spectral resolution: 4-6 cm⁻¹

Mathematical methods: Subtracted Shift Raman Spectroscopy (SSRS) assume that the fluorescence background can be completely eliminated by subtracting two Raman spectra recorded at two different grating positions

easy application
 full automatic spectra reconstruction

Osticioli et al., J. Raman Spec.37, (2006) Rosi et al., J. Raman Spectrosc. 41, (2010

Experimental Parameters

Renishaw 2000 Micro-Raman spectrometer

- 785 nm diode laser
- Power 6 mW
- 50x objective for a spot size of 6 μm diameter
- Range: 3500-200 cm⁻¹
- 100 s per acquisition, 3 acquisitions: Total time 5 minutes
- no visible damage to samples, or detectable change in spectrum over time

A. Brambilla et al., Rev. Sci. Instrum. 82, 063109 (2011)

Conclusions Raman is particularly useful for microanalysis (picogram sensitivity) Complexity due to different laser sources and instruments Difficulty in comparing spectra with reference databases in cultural heritage Intrinsic limitations Weak signal compared to Luminescence Alteration/burning of material by lasers